HIOKI

CT7812 **CT7822**

AC/DC CURRENT SENSOR

Instruction Manual

Dec. 2023 Revised edition 1

HIOKI

HIOKI E.E. CORPORATION

Edited and published by HIOKI E.E. CORPORATION

- Contents subject to change without notice.

 This document contains copyrighted content.

 It is prohibited to copy, reproduce, or modify the content of this document without permissi

 Company names, product names, etc. mentioned in this document are trademarks or

 registered trademarks of their respective companies.

Malfunctions occurring under conditions of normal use in conformity with the Instruction Manual and Product Precautionary Markings will be repaired free of charge. This warranty is valid for a period of three (3) years from the date of purchase. Please contact the distributor from which you purchased the product for further information on warranty provisions.

Introduction

Warranty

future reference.
Please review the separate Current Sensor Operating Precautions

before using this device.

When you receive the device, inspect it to confirm that no damage occurred during shipment. If you find any damage or discover that the device does not perform as indicated in the specifications, please contact your authorized Hioki distributor or reseller.

Overview

The CT7812 and CT7822 are clamp current sensors that can perform highly precise measurements of AC and DC currents of up to 2 A and 20 A, respectively. Both devices have excellent frequenc (amplitude and phase) and temperature (sensitivity and offset) characteristics, and can be used for current measurement and high-precision power measurement

Precautions

Observe the following precautions to ensure safe use of the device and effective use of its functions.

▲ DANGER

- Do not cause a short-circuit between the two wires in the measurement line with the metallic part of the tip of the sensor Doing so may cause an arc flash, resulting in serious bodily injury or damage to the device or other equipment.
- Do not measure any current in excess of the maximum input
- current.

 Doing so may cause overheating of the sensor, resulting in bodily injury, fire, or damage to the device. Maximum input current values can be confirmed from the Frequency derating curve (Fig. 1).
 - Do not use the device to measure bare conductors.
 Only perform measurement of insulated wires where there is sufficient insulation for the circuit voltage.
 Failure to do so can cause serious bodily injury or a short-circuit.
- Check that the cable insulation is not damaged and that the conductors in the cables are not exposed before use. Use with a damaged cable may lead to serious bodily injury. Contact your authorized Hioki distributor or reseller for repair.

⚠ WARNING

- If you have not previously used electrical measuring instruments, ensure adequate supervision by a technician who has experience in electrical measurement. Failure to do so may cause the operator to experience an electric shock. It may also cause serious events such as heat generation, fire, or arc flash due to a short-circuit.

⚠ CAUTION

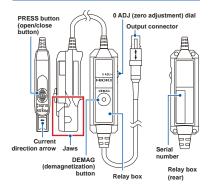
- Do not step on cables or allow them to become caught
- Do not step on cables or allow them to become caught between other objects.
 Doing so may damage the insulation, and cause the operator to experience an electric shock.
 Do not touch the cores while the jaws are open.
- If the cores are subject to static electricity, the device may be
- Do not touch the jaws during the measurement.
- Do not touch the jaws during the measurement.
 Even when the jaws are closed, if static electricity is applied, it could cause the device to malfunction.

 Do not connect or disconnect connectors while the device being connected is powered on.
 Doing so may damage this device or the connected device.
 Do not apply current to the device while it is turned off.
 Doing so may damage the device.
 Do not subject the device to vibration or mechanical shock while transporting or handling it.
 Do not drop the device.
 Do not bend or pull on a cable at temperatures of 0°C or lower.
 Low temperature conditions can cause a cable to harden. Bending or pulling a cable under these conditions may damage the insulation or cause a wife break, resulting in an electric shock. or cause a wire break, resulting in an electric shock.
- Keep the jaws locked when the device is not in use.

 Leaving the jaws unlocked may allow dust or dirt to settle on the facing core surfaces, resulting in failure of the device.
- Check that there is no overcurrent.
 Current that significantly exceeds the maximum input current of the device may flow when the equipment being measured is turned on and off, resulting in failure of the device.

- Do not place any foreign object between the jaw tips or insert any foreign object into the gap of the jaws. Failure to do so may cause the sensor characteristics to worsen or lead to problems with clamp opening/closing operation.

 Do not drop the device or subject it to mechanical shock. Doing so could damage the facing core surfaces of the jaws, and adversely affect measurement.


The device is classified as a Class A product under the EN 61326 standard. Use of the device in a residential setting may interfere with reception of radio and television broadcasts. If this occurs, take appropriate steps to counteract the issue.

Symbols on equipment

Indicates that the device can only be used at a location on an insulated wire with sufficient insulation for the circuit

Part Names

The optional equipment listed below is available for the device. To purchase optional equipment, please contact your authorized Hioki distributor or reseller. Options are subject to change. Check Hioki's website for the latest information.

L0220-01 (2 m), L0220-02 (5 m), L0220-03 (10 m), L0220-04 (20 m), L0220-05 (30 m)

mitted up to 30 m (However, conditions associated instruments take precedence.)

Maintenance and Service

If the device malfunctions, contact your authorized Hioki distributor

⚠ CAUTION

Observe the following when shipping the device

- Remove optional equipment from the device.
 When requesting repair, include a description of the
- malfunction.
- Double-pack the device.
 Failure to do so could cause damage during shipment.

Cleaning

A CAUTION

- If the device becomes dirty, wipe it clean with a soft cloth moistened with water or a neutral detergent. Never use solvents such as benzene, alcohol, acetone, ether,
- ketone, thinners, or gasoline, and do not wipe with excessive force. Doing so could cause deformation or discoloration of the

Calibration

The appropriate schedule for calibration depends on factors such as the operating conditions and environment. Determine the appropriate calibration interval based on your operating conditions and environment and have Hioki calibrate it accordingly.

Measuring Current

Inspecting the device before use

Before use, check the device for malfunctions or damage and check its operation. If you find any malfunction or damage, contact your authorized Hioki distributor or reseller.

Inspection item	Solution	
Damage to cable insulation	If there is any damage to the	
Jaw crack or damage	cable insulation, request repair and do not use the device. Doing so could cause an electric shock.	

CAUTION

- Do not place any conductor that can carry a current with a frequency of 10 kHz or higher near the jaws.
 Even if the device is not clamped around a conductor, a nearby conductor carring a high frequency current may cause the temperature of the jaws to rise and damage the device due to self-heating.

Procedure

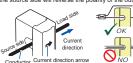
- 1 Connect the device to a measuring instrument that is powered
- Turn on the measuring instrument.
- If required, perform demagnetization (DEMAG) and zero adjustment (0 ADJ).

See "Demagnetization (DEMAG) and zero adjustment (0 ADJ).

Press down and slide the PRESS

Close the jaws.

Clamp the device around one conductor only, then press down and slide the PRESS button to close the jaws.



:**=**

IMPORTANT

Clamp the device around only one conductor. Clamping the device around two or more conductors in a bundle prevents the device from measuring current, regardless of whether the measurement target is a single-phase or three-phase circuit.

Clamping the device with the current direction arrow pointing to

- Remove the device from the conductor after measurement has
- 8 Turn the measuring instrument off and disconnect the device from the measuring instrument.

Demagnetization (DEMAG) and zero adjustment (0 ADJ)

Immediately after the device is turned on or if a current exceeding the rated current is input, the device will output an offset. The offset will cause an error in DC current measurement, so perform

- Close the laws with no input and press the DEMAG (demagnetization) button. Wait at least 1 second.
- Open and close the jaws several times, and then

- and turn the 0 ADJ (zero adjustment) dial on the device to perform zero adjustment.
- Zero adjustment cannot be performed while a current is being input.
 The offset output varies depending on the surrounding environment, such as temperature and peripheral magnetic fields.
 Perform zero adjustment at the location where you will measure

- · If the connected measuring instrument has a zero-correction function, perform zero correction on the connected instrument. In such cases, set the 0 ADJ dial on the device so that the value is roughly in the middle of the values displayed when the dial is fully turned to the maximum and minimum positions.

 Mechanical shocks such as dropping the device may cause the offset to shift.
- If zero adjustment is unsuccessful, perform demagnetization (DEMAG) several times with the jaws closed.
- (DEMAG) several times with the jaws closed.

 When measuring a DC or low-frequency (1 kHz or less) small current, the sensitivity of the device can be increased by wrapping the conductor around the jaws several times. If the conductor is wrapped around the jaws 10 times, the device will output a signal that is 10 times the measured current.
- Measurement of high-frequency current is susceptible to common-mode noise if the device is clamped to the high-potential side of a circuit. If common-mode noise occurs, clamp the device to the low-potential side of the circuit.

- When measuring a high-frequency (1 kHz or more) large current, the conductor position may increase measurement errors or distort the waveform. Place the conductor to be measured as close as possible to the center of aperture of the jaws. Nearby conductors other than the one around which the device is clamped that are carrying high-frequency (1 kHz or more) large currents may increase measurement errors or distort the waveform. Keep the device as far away as possible from other conductors during
- Do not use the device to measure conductors with surface temperatures that exceed 85°C.

Specifications

Accuracy notations

Reading (display value): Indicates the value displayed by the instrument. Limit values for reading errors are expressed as a percentage of the reading (% rdg).

Full scale (rated current): Indicates the rated current. Limit values for full-scale errors are expressed as

Operating environment	Indoor use, pollution level 2, altitude up to 2000 m (6562 ft.)
Operating	Sensor: -40°C to 85°C (-40°F to 185°F), 80% RH or less
temperature and	(non-condensing)
humidity range	Relay box: -25°C to 50°C (-13°F to 122°F), 80% RH or less (non-condensing)
Storage	-25°C to 50°C (-13°F to 122°F), 80% RH or less (non-
temperature and	-25 C to 50 C (-13 F to 122 F), 60% KH of less (non- condensing)
humidity range	(Sensor + relay box)
Standards	
Standards	Safety: EN 61010 EMC: EN 61326 Class A
Power supply	Power supplied from Hioki instruments with a PL14
	connector (see "Function specifications")
	Maximum rated power
	CT7812: 0.2 VA or less (during measurement of 2 A
	current with 55 Hz, when ±5 V power is
	supplied)
	CT7822: 0.3 VA or less (during measurement of 20 A
	current with 55 Hz, when ±5 V power is supplied)
	Normal power consumption (reference)
	CT7812: 0.08 VA (at input of approx. 50%)
	CT7822: 0.16 VA (at input of approx. 50%)
Interface	Dedicated interface (PL14)
Dimensions	Sensor: Approx. 76.5W x 23.4H x 14.2D mm
	(3.0W × 0.9H × 0.6D in.)
	Relay box: Approx. 80W x 20H x 26.5D mm
	(3.2W x 0.8H x 1.0D in.)
	(excluding protrusions and cable)

Dimensions of	Approx. 18.2H x 11.5D mm
jaws	
Output cable	Approx. 4 m (between sensor and relay box)
length	Approx. 0.2 m (between relay box and output
	connector)
Weight	Approx. 140 g (4.9 oz.)
Product warranty	3 years (excluding the jaws and cable)
duration	
Included	Color labels (for channel identification), carrying case,
accessories	Instruction Manual, Current Sensor Operating
	Precautions (0990A901)
Options	See "Options".
Rated current	CT7812: 2 A AC/DC
	CT7822: 20 A AC/DC
Maximum input	CT7812: 3 A rms continuous (±4.3 Ap)
current	CT7822: 30 A rms continuous (±43 Ap)
	Not exceeding frequency derating curve shown in Fig. 1
Output voltage	CT7812: 0.1 V/A, CT7822: 0.01 V/A
Measurement	Flux-gate-type zero-flux current sensor
method	
Measurable	φ5 mm or less
conductor	
diameter	
0 ADJ dial range	CT7812: ±8 mA typ. when converted to input current
	(±0.8 mV typ.)
	CT7822: ±80 mA typ. when converted to input current
	(±0.8 mV typ.)
DEMAG function	Operation time approx. 1 second
Accuracy	Accuracy guarantee period: 1 year or 10000 cycles of
guarantee	opening and closing, whichever comes first
conditions	Accuracy guarantee temperature and humidity range:
	0°C to 40°C (32°F to 104°F), 80% RH or less
	No warmup required.
	Line-to-earth voltage: 0 V; no external magnetic field;
	a conductor located at the aperture center

Measurement accuracy

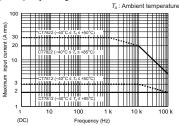
Frequency	Amplitude (common for CT7812 and CT7822) ± [(% of reading) + (% of full scale)]	Phase
DC	0.3% + 0.10%	_
DC < f ≤ 66 Hz	0.3% + 0.05%	±0.1°
66 Hz < f ≤ 500 Hz	0.3% + 0.05%	±0.7°
500 Hz < f ≤ 1 kHz	0.5% + 0.05%	±2.0°
1 kHz < f ≤ 5 kHz	1.0% + 0.10%	±7.0°
5 kHz < f ≤ 10 kHz	5.0% + 0.10%	±15.0°
10 kHz < f ≤ 100 kHz	30.0% + 0.10%	_

- . DC accuracy is defined by adjusting the offset to the value converted to input current*1 or less with the 0 ADJ dial or after zero adjustment has
- input current" or less than the UAU dial or after zero aquisiment has been performer of less than the control instrument. *1. CTR312: 0.5 mA (0.05 mV), CTR322: 5 mA (0.05 mV). *The amplitude and phase accuracy are defined for an input current not more than a current of 10% of full scale and within the decardy range (Fig. 1). However, the design value is defined for the frequency range of

DC < f < 10 Hz.	,,,,,,
	15% of the full scale per degree Celsius is added from the ure during zero adjustment (CT7812 only)
Output noise	CT7812: 10 mA rms or less when converted to input current (1 mV rms or less), ≤ 100 kHz CT7822: 50 mA rms or less when converted to input current (0.5 mV rms or less), ≤ 100 kHz
Effects of temperature	The following values are added to the measurement accuracy if operating temperatures are outside the guaranteed accuracy; forparting temperature range. Sensor: Ambient temperature ~40°C to 0°C or 40°C to 8°C C Relay box: Ambient temperature ~25°C to 0°C or 40°C to 50°C Amolitude: ±0.01% of reading oner denere Celsius
	Offset CT7812: ±0.05% of full scale per degree Celsius CT7822: ±0.01% of full scale per degree Celsius
Effects of magnetization	CT7812: 1 mA or less when converted to input current (0.1 mV or less, after input of 2 A DC) CT7822: 2 mA or less when converted to input current

(0.02 mV or less, after input of 20 A DC)

DC to 100 Hz: 140 dB or more Common-mode voltage rejection ratio (CMRR) 100 Hz to 1 kHz: 130 dB or more DC to 100 Hz: ±0.1% of reading or less conductor position (CT7812: 2 A input, CT7822: 20 A input) For a conductor 2 mm in diameter


Effects of external magnetic fields

CT7812: 20 mA or less when converted to input current (2 mV or less), DC or 60 Hz magnetic field of 400 A/m

CT7822: 20 mA or less when converted to input
current (0.2 mV or less), DC or 60 Hz
magnetic field of 400 A/m Effects of radiated radio-frequency electromagnetic field Effects of conducted radio-frequency electromagnetic field 30% of full scale at 10 V

	Combined accuracy and conditions
Options	Extension Cable L0220-01 (2 m), L0220-02 (5 m), L0220-03 (10 m), L0220-04 (20 m), L0220-05 (30 m) Extensions permitted up to 30 m (depending on conditions associated with connected instruments) 0.1% rdg added for every 5 m at 5 m or more. Maximum input current limitted to 25 A rms (35 Ap) at 5 m or more (CTT822)
Compatible instruments	LR8536 Wireless Current Module (LR8450-01) U8556 Current Module (LR8450, LR8450-01) (Refer to the specifications of each module for the combined accuracy.)
Non- compatible instruments	CM7290, CM7291 Display Unit PW3198 Power Quality Analyzer PQ3100 Power Quality Analyzer CT9920 Conversion Cable

Fig. 1. Frequency derating curve.

