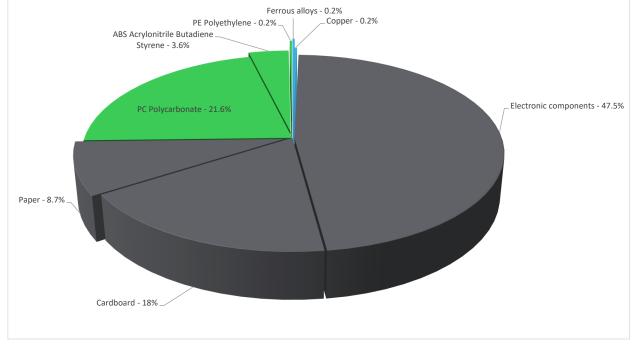
Product Environmental Profile

PowerLogic EM3500 DIN rail meter



General information

Reference product	PowerLogic EM3500 DIN rail meter - METSEEM3550
Description of the product	The EM3500 series offer a three-phases DIN rail-mounted energy meters fitted for accurate cost allocation and sub-metering.
Description of the range	The products of the range are: PowerLogic EM3500 series The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	EM35xx models are designed for use with Low Votage Current Transducers 1/3Volt or 1Volt output. Current input from 5A to 32000A, according to the LVCT configuration in the HMI, ANSI C12.20 0.2% accuracy, IEC 62053-22 class 0.2S. Modbus, pulse output, and phase alarms are all provided to suit a wide variety of applications. Suitable for a 230V AC network, with a supply voltage range of 90V AC to 300V AC at 50Hz or 60Hz. Compliant with UL508, CSA 22.2 number 14-05 and EN 61010-1.

Constituent materials

Reference product mass 410 g including the product, its packaging, additional elements and accessories

Plastics 25.4%
Metals 0.4%
Others 74.2%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(19) Additional environmental information

End Of Life

Recyclability potential:

1%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	10 years					
Product category	Other equipments - Active product					
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study					
Electricity consumtion	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption					
Installation elements	The product does not require any installation operations					
Use scenario	The product is in active mode 10% of the time with a power use of 2.5 W, in standby mode 30% of the time with a power use of 1.8 W, and in sleep mode for 60% of the time with a power use of 1.5 W, for 10 years.					
Time representativeness	The collected data are representative of the year 2024					
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.					
Geographical	Final assembly site	ssembly site Use phase				
representativeness	Mechanisburg	U	USA			
Energy model used	[A1 - A3]	[A5]	[B6]	[C1 - C4]		
	Electricity Mix; Low voltage; 2020; United States, US	No energy used	Electricity Mix; Low voltage; 2020; United States, US	Global, European and French datasets are used.		

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators			Po	werLogic EM350	00 DIN rail mete	r - METSEEM3550)	
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	8.37E+01	1.14E+01	1.84E-01	0*	7.12E+01	8.89E-01	0.00E+00
Contribution to climate change-fossil	kg CO2 eq	8.34E+01	1.15E+01	1.84E-01	0*	7.08E+01	8.89E-01	0.00E+00
Contribution to climate change-biogenic	kg CO2 eq	3.31E-01	0*	0*	0*	3.68E-01	0*	0.00E+00
Contribution to climate change-land use and land use change	kg CO2 eq	1.41E-04	1.41E-04	0*	0*	0*	0*	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	2.42E-06	1.98E-06	1.63E-07	0*	2.76E-07	8.02E-10	0.00E+00
Contribution to acidification	mol H+ eq	3.92E-01	6.58E-02	8.02E-04	5.77E-05	3.25E-01	6.13E-04	0.00E+00
Contribution to eutrophication, freshwater	kg P eq	1.59E-04	3.68E-05	2.16E-08	2.11E-08	1.18E-04	4.41E-06	0.00E+00
Contribution to eutrophication, marine	kg N eq	4.94E-02	7.80E-03	3.69E-04	2.72E-05	4.09E-02	2.98E-04	0.00E+00
Contribution to eutrophication, terrestrial	mol N eq	5.77E-01	8.66E-02	4.00E-03	2.77E-04	4.83E-01	3.07E-03	0.00E+00
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.64E-01	2.70E-02	1.31E-03	6.64E-05	1.35E-01	7.44E-04	0.00E+00
Contribution to resource use, minerals and metals	kg Sb eq	2.81E-03	2.80E-03	0*	0*	1.08E-05	0*	0.00E+00
Contribution to resource use, fossils	MJ	1.70E+03	1.55E+02	2.30E+00	0*	1.54E+03	1.12E+00	0.00E+00
Contribution to water use	m3 eq	8.21E+00	4.58E+00	9.37E-03	1.03E-02	3.58E+00	3.23E-02	0.00E+00

Inventory flows Indicators	PowerLogic EM3500 DIN rail meter - METSEEM3550							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to renewable primary energy used as energy	MJ	1.99E+02	1.07E+01	0*	0*	1.88E+02	0*	0.00E+00
Contribution to renewable primary energy used as raw material	MJ	2.15E+00	2.15E+00	0*	0*	0*	0*	0.00E+00
Contribution to total renewable primary energy	MJ	2.01E+02	1.29E+01	0*	0*	1.88E+02	0*	0.00E+00
Contribution to non renewable primary energy used as energy	MJ	1.70E+03	1.49E+02	2.30E+00	0*	1.54E+03	1.12E+00	0.00E+00
Contribution to non renewable primary energy used as raw material	MJ	5.61E+00	5.61E+00	0*	0*	0*	0*	0.00E+00
Contribution to total non renewable primary energy	MJ	1.70E+03	1.55E+02	2.30E+00	0*	1.54E+03	1.12E+00	0.00E+00
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of fresh water	m³	1.91E-01	1.06E-01	2.18E-04	2.41E-04	8.34E-02	7.54E-04	0.00E+00
Contribution to hazardous waste disposed	kg	4.05E+01	3.90E+01	0*	0*	1.33E+00	1.95E-01	0.00E+00
Contribution to non hazardous waste disposed	kg	1.59E+01	5.11E+00	0*	1.11E-01	1.05E+01	1.16E-01	0.00E+00
Contribution to radioactive waste disposed	kg	4.05E-03	1.52E-03	3.67E-05	0*	2.49E-03	5.44E-06	0.00E+00
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	3.22E-03	1.40E-03	0*	0*	0*	1.82E-03	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	2.68E-05	8.74E-06	0*	0*	0*	1.80E-05	0.00E+00

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0.00E+00

Contribution to biogenic carbon content of the associated packaging kg of C 3.43E-02

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2509001_V1-EN	Drafting rules	PEP-PCR-ed4-2021 09 06				
		Supplemented by	PSR-0005-ed3-2023 06 06				
Date of issue	2025-09	Information and reference documents	www.pep-ecopassport.org				
		Validity period	5 years				
Independent verification of the declaration and data, in compliance with ISO 14021: 2016							
nternal X External							
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)							
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022							
The components of the present PEP may not be compared with components from any other program.							
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"							

2025-09

