

BIGGEST TOUCH. BEST VALUE.

WaveSurfer 3000z

100 MHz – 1 GHz Oscilloscopes

10.1" Capacitive Touch Screen

20 Mpts Memory

Powerful, Deep Toolbox

The WaveSurfer 3000z has a 10.1" capacitive touch display, the longest memory, and the deepest toolbox – all at an affordable price.

teledynelecroy.com/oscilloscope/wavesurfer-3000z-oscilloscopes

BIGGEST TOUCH. BEST VALUE.

WaveSurfer 3000z

Biggest Touch

Best Value 30% Larger

Digital Voltmeter Logic Analysis with 16 Mixed Signal Capabilities

20 Mpts Powerful Triggering Superior Measurement Tools

History Mode Anomaly Detection

WaveScan LabNotebook Waveform Generator

Multi-Instrument Capabilities (AFG)

Powerful, Protocol Analysis with Serial Trigger and Decode

Pass/Fail Deep Toolbox

Testing Advanced Math Fast Waveform Update

The WaveSurfer 3000z has a 10.1" capacitive touch display, the longest memory, and the deepest toolbox – all at an affordable price.

- 10.1" Capacitive Touch Screen
- 20 Mpts Memory
- 3 Powerful, Deep Toolbox

Faster Time to Insight

Insight alone is not enough.

Markets and technologies change too rapidly.

The timing of critical design decisions is significant.

Faster Time to Insight is what matters.

THE WAVESURFER 3000Z ATTRIBUTES

The WaveSurfer 3000z provides the Most Advanced User Interface (MAUI) through a 10.1" capacitive touch screen. It promotes true versatility with 20 Mpts of memory, multi-instrument capabilities, a powerful, deep toolbox, and 100 MHz - 1 GHz of bandwidth.

Key Attributes

- 10.1" widescreen capacitive touch screen display
- 2. MAUI Most Advanced User Interface
- Waveform Control Knobs for channel, zoom, math and memory traces
- **4.** "Push" Knobs push functionality provides shortcuts to common actions
- **5.** Dedicated buttons to quickly access popular debug tools.
- **6.** Mixed Signal Capability 16 channel mixed signal capability
- **7.** Easy connectivity with an ethernet and four USB 2.0 Ports
- Rotating and tilting feet for four different viewing positions

- WaveSource Ouput for Built-in Function Generator
- Micro SD Port 16 GB (or larger) micro SD card installed standard
- **11.** External Monitor DB-15 connector (Support resolution of 1024 x 600)
- **12.** USBTMC (Test and Measurement Class) over USB 2.0 for remote connectivity
- 13. Small Footprint

WAVESURFER 3000z AT A GLANCE

Key Features

100 MHz, 200 MHz, 350 MHz, 500 MHz and 1 GHz bandwidths

Up to 4 GS/s sample rate

Long Memory – up to 20 Mpts

10.1" capacitive touch screen display

16 Digital Channel MSO option

MAUI - Most Advanced User Interface

- Designed for Touch
- Built for Simplicity
- Made to Solve

Advanced Anomaly Detection

- Fast Waveform Update
- History Mode Waveform Playback
- WaveScan Search and Find

Multi-Instrument Capabilities

- Protocol Analysis -Serial Trigger and Decode
- Waveform Generation Built-in Function Generator
- Digital Voltmeter and Frequency Counter

Future Proof

- Upgradeable Bandwidth
- Field Upgradable Software and Hardware Options

Superior User Experience

MAUI is the most advanced oscilloscope user interface. It is designed for touch, built for simplicity, and made to solve.

Advanced Anomaly Detection

A fast waveform update rate, used in conjunction with history mode, WaveScan, sequence mode, and mask testing facilitates outstanding waveform anomaly detection.

Biggest Touch Display

A large capacitive touch screen enables accessible and responsive touch operation. The 10.1" display is 30% larger than competitive offerings, providing more waveform viewing area.

Powerful, Deep Toolbox

The standard collection of math, measurement, debug, and documentation tools provides unsurpassed analysis capabilities.

MAUI - SUPERIOR USER EXPERIENCE

Designed for Touch

MAUI is designed for touch. Operate the oscilloscope just like a phone or tablet with the most unique touch screen features on any oscilloscope. All important controls are always one touch away. Touch the waveform to position or zoom in for more details using intuitive actions.

Built for Simplicity

MAUI is built for simplicity. Basic waveform viewing and measurement tools as well as advanced math and analysis capabilities are seamlessly integrated in a single user interface. Time saving shortcuts and intuitive dialogs simplify setup and shorten debug time.

Made to Solve

MAUI is made to solve. A deep set of integrated debug and analysis tools help identify problems and find solutions quickly. Unsurpassed integration provides critical flexibility when debugging. Solve problems fast with powerful analysis tools.

ADVANCED ANOMALY DETECTION

WaveScan Advanced Search

- Locate unusual events in a single capture or scan for an anomalies across many acquisitions
- More than 20 modes can be applied to analog or digital channels

Pass/Fail Mask Testing

- Mask testing to quickly identify anomalies and mark their location.
- A history of these pass/fail results can be displayed

Fast Waveform Update

- An update rate of over 130,000 waveforms per second will easily display random or infrequent events
- Changes over time can be seen with the intensity graded persistence display

History Mode Waveform Playback

- View previous waveforms to discover past anomalies
- Use cursors and measurement parameters to quickly identify the source of problems
- History mode is always enabled and accessible through the click of a button

Powerful Triggering

- Basic triggering such as edge or width can be used for everyday solutions
- Qualified triggering enables the ability to trigger across multiple channels
- Powerful logic triggering can be setup to catch a parallel pattern
- Smart triggers such as runt, dropout, or interval help isolate anomalies quickly
- Serial data triggering adds protocol specific triggers

Advanced Waveform Capture with Segmented Memory

- Save waveforms into segmented memory
- Capture fast pulses in quick succession or events separated by long time intervals
- Combine Sequence mode with advanced triggers to isolate rare events

MULTI-INSTRUMENT CAPABILITIES

The DVM license key can be downloaded at no charge from *teledynelecroy.com/redeem/dvm*.

Precise Measurements with Digital Voltmeter

- 4-digit digital voltmeter
- 5-digit frequency counter
- Any channel can be selected as a source
- Voltage readings can be set to DC, DC RMS, or AC RMS
- Measurements will continue to be updated even when triggering is stopped

Waveform Generation with Built-in Function Generator

- Frequencies of up to 25 MHz
- Waveform Options: sine, square, pulse, ramp, triangle, noise and DC waveforms
- Rear panel BNC output
- Saved waveforms can be uploaded into the WaveSource to generate arbitrary waveforms

POWERFUL, DEEP TOOLBOX

Advanced Math Capabilities

- A deep set of 20 math functions provide quick insight into waveforms
- Dedicated Grid for Math Traces
- Any Channel, Measurement, or Analysis Package can have a math function applied

Superior Measurement Tools

- 24 measurement parameters
- Additional statistics and histicons can be applied to each parameter
- Trends can be displayed for any measurement

LabNotebook Documentation Tool

- Save all displayed waveforms, oscilloscope setup file, and a screen image with a single button press
- Recall LabNotebook files onto the oscilloscope
- View the LabNotebook files on a PC using WaveStudio

PROBES

Teledyne LeCroy offers an extensive range of probes to meet virtually every probing need.

ZS Series High Impedance Active Probes (1 GHz - 1.5 GHz)

The active voltage probe can become the everyday probe for all different types of signals and connection points.

Differential Probes (200 MHz - 1.5 GHz)

These active differential probes are ideal for applications such as automotive electronics and data communications.

Active Voltage/Power Rail Probe (4 GHz)

The Active Rail Probe is specifically designed to probe a low impedance power/voltage rail.

High Voltage Fiber Optically-isolated Probes

The HVF0108 is ideal for measurement of small signals floating on an HV bus in power electronics designs or for EMC, EFT, ESD, and RF immunity testing sensor monitoring.

High Voltage Differential Probes (120 MHz)

HVDs are rated for wide differential voltage swings - ideal for power electronics circuits.

High Voltage Passive Probes

High Voltage Single-ended passive probes that are ideal for lightning/surge or EFT testing, or for probing in-circuit beyond the range of a LV-rate passive probe.

Current Probes (100 MHz)

Current probes with peak currents of 700 A and sensitivities to 1 mA/div. Ideal for component or power conversion system input/output measurements.

Probe and Current Sensor Adapters

TPA10 adapts supported Tektronix TekProbe-compatible probes to Teledyne LeCroy ProBus interface.

SPECIFICATIONS

WaveSurfer 3014z WaveSurfer 3024z WaveSurfer 3034z WaveSurfer 3054z WaveSurfer 3104z

Analog - Vertical	WaveSurier 30142	Waveourier 00242	Waveourier 000 12	Waveourier 00042	waveSurier 51042	
Analog Bandwidth @ 50Ω (-3dB)	100 MHz	200 MHz	350 MHz	500 MHz	1 GHz	
Rise time	3.5 ns (typical)	1.75 ns (typical)	1 ns (typical)	800 ps (typical)	430 ps (typical)	
Input Channels	4					
Vertical Resolution		h enhanced resolution (I				
Sensitivity		50 Ω: 1mV/div - 1 V/div; 1 MΩ: 1 mV/div - 10 V/div				
DC Gain Accuracy		et at 0V, > 5 mV/div; \pm (2.	5%) < 5 mV/div			
BW Limit		MHz		20 MHz, 200 MHz		
Maximum Input Voltage		ak; 1 M Ω : 400 V max (D	<u>C + Peak AC ≤ 10 kHz)</u>	-		
Input Coupling	50 Ω: DC, GND; 1 MΩ: A					
Input Impedance	50 Ω ±2.0%, 1 MΩ ±2.0					
Offset Range	50 Ω : 1 mV - 19.8 mV: ±2 V, 20 mV - 100 mV: ±5 V, 102 mV - 198 mV: ±20 V, 200 mV - 1 V: ±50 V 1 M Ω : 1 mV - 19.8 mV: ±2 V, 20 mV - 100 mV: ±5 V, 102 mV - 198 mV: ±20 V, 200 mV - 1 V: ±50 V, 1.02 V - 1.98 V: ±200 V, 2 V - 10 V: ±400 V					
Offset Accuracy	±(1.0% of offset value +					
Analog - Acquisition						
Sample Rate (Single-shot)	1 GS/s (2 GS/s interleaved)			SS/s aterleaved)		
Sample Rate (Repetitive)	50 GS/s		(100,011			
Standard Memory (4 Ch / 2 Ch)	10 Mpts / 20 Mpts					
Acquisition Modes	Real Time, Roll, RIS (Ra	andom Interleaved Samp Memory up to 1,000 se	oling), gments with 1µs minimi	um intersegment time)		
Real Time Timebase Range	5 ns/div - 100 s/div	2 ns/div -	100 s/div	1 ns/div - 100 s/div	500 ps/div - 100 s/div	
RIS Mode Timebase Range	5 ns/div - 10 ns/div		10 ns/div	1 ns/div - 10 ns/div	500 ps/div - 10 ns/div	
Roll Mode Timebase Range		ode is user selectable at	≥ 50 ms/div)			
Timebase Accuracy	±10 ppm measured over	er > 1ms interval				
Digital - Vertical and Acquisit	ion (WS3K-MSO Optio	on Only)				
Input Channels	16 Digital Channels					
Threshold Groupings	Pod 2: D15 - D8, Pod 1: D	7 - D0				
Threshold Selections		2.5V), ECL (-1.3V) or User	Defined			
Maximum Input Voltage	±30V Peak	,,				
Threshold Accuracy	±(3% of threshold setting	g + 100mV)				
Input Dynamic Range	±20V					
Minimum Input Voltage Swing	500mVpp					
Input Impedance (Flying Leads)	100 kΩ 5 pF					
Maximum Input Frequency	125 MHz					
Sample Rate	500 MS/s					
Record Length	10MS - 16 Channels					
Minimum Detectable Pulse Width	4 ns					
Channel-to-Channel Skew User defined threshold range	± (1 digital sample inte ±10V in 20mV steps	rval)				
Trigger System						
Modes	Auto, Normal, Single, S	top	and tour to the	h	4-2	
Sources		ernal, Ext/5, or line; slope	and level unique to eac	n source (except for line	e trigger)	
Coupling Pro trigger Delay	DC, AC, HFREJ, LFREJ	, 				
Pre-trigger Delay	0-100% of full scale 0-10,000 Divisions					
Post-trigger Delay Hold-off	10ns up to 20s or 1 to	100 000 000 ovente				
Internal Trigger Level Range	±4.1 Divisions	100,000,000 EVENIS				
External Trigger Level Range	Ext: ±610mV, Ext/5: ±3.					
Trigger Types	Edge, Width, Logic (Pat	tern), TV (NTSC, PAL, SE	ECAM, HDTV - 720p, 108 State or Edge); External :			
Measure, Zoom and Math To	ols					
Measurement Parameters	Up to 6 of the following Duty Cycle, Fall Time (9 Overshoot-, Peak-Peak,	90%–10%), Fall Time (80 Period, Phase, Rise Tim	culated at one time on a 1%–20%), Frequency, Ma 1e (10%–90%), Rise Time	aximum, Mean, Minimur e (20%–80%), RMS, Ske	n, Overshoot+, w, Standard	
7			isticons can be added to			
Zooming Math Functions	Use front panel QuickZoom button, or use touch screen or mouse to draw a box around the zoom area. Up to 2 of the following functions can be calculated at one time: Sum, Difference, Product, Ratio, Absolute Value, Average, Derivative, Enhanced Resolution, Envelope, Floor, Integral, Invert, Reciprocal, Rescale, Roof, SinX/x, Square, Square Root, Trend, Zoom and FFT (up to 1 Mpts with power spectrum output and rectangular, VonHann, and FlatTop windows).					
Probes						
Standard Probes	One PP019 (5n	nm) per channel	One	e PP020 (5mm) per cha	nnel	
Probing System			Itage, current and differen			

SPECIFICATIONS

	veSurter 3024z WaveSurter 3	3034z WaveSurfer 3054z WaveSurfer 3104z			
10.1" widescreen capacitive t	touch screen				
1024 x 600	•				
10/100Rase-T Ethernet inter	face (B I-45 connector)				
	110H 00D 2.01 0H3				
	support resolution of 1024x600)				
		mand Set			
	The release to the received to the	Thank out			
'					
	0.11= 1.7 507.100 100.740 11007	at 400 He II / F0/. Automotic AO Valtaria Calcation			
	100 - 240 VAC ± 10% at 50-60 Hz +/-5%; 100 - 120 VAC ± 10% at 400 Hz +/- 5%; Automatic AC Voltage Selection				
	paripharala digital landaat and acti	va probas connected to 4 shannels)			
Tax) T50 W / T50 VA (WILITAII PC L	periprierais, digital leadset and acti	ve probes connected to 4 channels)			
Operating: 0 °C to 50 °C; Non	n-Operating: -30 °C to 70 °C				
		≤ 30 °C, Upper limit derates to 50% relative humidity			
(non-condensing) at +50 °C					
Operating: 3,048 m (10,000 f	t) max at ≤ 25C; Non-Operating: Up	o to 12,192 meters (40,000 ft)			
10 63"H v 14 96"W v 4 92"D (270 mm v 380 mm v 125 mm)				
	270 11111 × 300 11111 × 123 11111)				
1.5 r Ng (10.5 150)					
UL 61010-1, UL 61010-2-030	0:2010, 3rd Edition; CAN/CSA C22.2	2 No. 61010-1-12			
otional)					
	CV				
		es/second			
,	,				
on Generator (optional)					
(oparetta)	DC Offset				
25 MHz	Range (DC)	±3V (HiZ); ±1.5V (50 Ω)			
1		±(1% of offset value + 3 mV)			
125 MS/s		,			
	Waveform Output				
16 KPTS	Impedance	50 Ω ± 2%			
1 μHz	Protection	Short-circuit protection			
14-bit	Sin a Constantin De				
±3V (HiZ); ±1.5V (50 Ω)					
Sine, Square, Pulse, Ramp, Noise, DC					
on	<u>DC-1 MHz</u> 1 MHz - 5 MHz	-60dBc			
)N		-55dBc -50dBc			
1 μHz - 25 MHz	5 MHz - 25 MHz				
1 μHz - 25 MHz 1 μHz - 10 MHz	Harmonic Distortion	on @1.265Vpp			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz	Harmonic Distortion DC - 5 MHz	on @1.265Vpp -50dBc			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB)	Harmonic Distortion	on @1.265Vpp			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz	Harmonic Distortion DC - 5 MHz	on @1.265Vpp -50dBc -45dBc			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz ±50 ppm, over temperature	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%)			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time Overshoot	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%) 3% (typical - 1 kHz, 1 Vpp)			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz ±50 ppm, over temperature ±3 ppm/year, first year	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time Overshoot Pulse Width	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%) 3% (typical - 1 kHz, 1 Vpp) 50 ns min.			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz ±50 ppm, over temperature ±3 ppm/year, first year 4 mVpp - 6 Vpp (HiZ); 2 mVpp - 3 Vpp(50	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time Overshoot Pulse Width	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%) 3% (typical - 1 kHz, 1 Vpp)			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz ±50 ppm, over temperature ±3 ppm/year, first year 4 mVpp - 6 Vpp (HiZ); 2 mVpp - 3 Vpp(50±(0.3dB + 1 mV)	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time Overshoot Pulse Width Jitter	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%) 3% (typical - 1 kHz, 1 Vpp) 50 ns min.			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz ±50 ppm, over temperature ±3 ppm/year, first year 4 mVpp - 6 Vpp (HiZ); 2 mVpp - 3 Vpp(50	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time Overshoot Pulse Width Jitter Ramp/Triangle	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%) 3% (typical - 1 kHz, 1 Vpp) 50 ns min. 500ps + 10ppm of period (RMS cycle to cycle)			
1 μHz - 25 MHz 1 μHz - 10 MHz 1 μHz - 300 KHz 25 MHz (-3dB) 1 μHz ±50 ppm, over temperature ±3 ppm/year, first year 4 mVpp - 6 Vpp (HiZ); 2 mVpp - 3 Vpp(50±(0.3dB + 1 mV)	Harmonic Distortion DC - 5 MHz 5 MHz - 25 MHz Square/Pulse Rise/fall time Overshoot Pulse Width Jitter	on @1.265Vpp -50dBc -45dBc 24 ns (10% - 90%) 3% (typical - 1 kHz, 1 Vpp) 50 ns min.			
	(1) MicroSD Port - 16 GB mic (4) USB 2.0 Ports Total – (2) (1) USBTMC Supports IEEE – 488.2 Standard DB-15 connector (s Via Windows Automation, or on VICP and LXI compatible SS 100 - 240 VAC ± 10% at 50-6 Nominal) 80 W / 80 VA Max) 150 W / 150 VA (with all PC p Operating: 0 °C to 50 °C; Nor Operating: 5% to 90% relative (non-condensing) at +50 °C Non-Operating: 5% to 95% re Operating: 3,048 m (10,000 f 10.63"H x 14.96"W x 4.92"D (4.81 kg (10.6 lbs) Low Voltage Directive 2014/30/EU; E UL 61010-1, UL 61010-2-030 ptional) ACrms, DC, DCrms, Frequenc ACV/DCV: 4 digits, Frequenc 100 times/second, measure ange Automatic adjustment of ver on Generator (optional) 25 MHz 1 125 MS/s 16 kpts 1 μHz 14-bit ±3V (HiZ); ±1.5V (50 Ω)	Supports IEEE − 488.2 Standard DB-15 connector (support resolution of 1024x600) Via Windows Automation, or via Teledyne LeCroy Remote Com on VICP and LXI compatible 100 - 240 VAC ± 10% at 50-60 Hz +/-5%; 100 - 120 VAC ± 10% at 100 - 240 VAC ± 100 VAC			

ORDERING INFORMATION

Product Description	Product Code
WaveSurfer 3000z Oscilloscopes	
100 MHz, 2 GS/s, 4 Ch, 10 Mpts/Ch with	WaveSurfer 3014z
10.1" Capacitive Touch Screen Display	
20 Mpts /Ch in interleaved mode	
200 MHz, 4 GS/s, 4 Ch, 10 Mpts/Ch with	WaveSurfer 3024z
10.1" Capacitive Touch Screen Display	
20 Mpts /Ch in interleaved mode	
350 MHz, 4 GS/s, 4 Ch, 10 Mpts/Ch with	WaveSurfer 3034z
10.1" Capacitive Touch Screen Display	
20 Mpts /Ch in interleaved mode	
500 MHz, 4 GS/s, 4 Ch, 10 Mpts/Ch with	WaveSurfer 3054z
10.1" Capacitive Touch Screen Display	
20 Mpts /Ch in interleaved mode	
1 GHz, 4 GS/s, 4 Ch, 10 Mpts/Ch with	WaveSurfer 3104z
10.1" Capacitive Touch Screen Display	
20 Mpts /Ch in interleaved mode	
Included with Standard Configurations	

÷10 Passive Probe (Total of 1 Per Channel), 1 Micro SD card (Installed), Micro SD card adapter, Protective Front Cover, Getting Started Guide, Commercial NIST Traceable Calibration with Certificate, Power Cable for the Destination Country, 3-year Warranty

General Accessories

External GPIB Accessory	USB2-GPIB
Soft Carrying Case	WS3K-SOFTCASE
Rack Mount Accessory	WS3K-RACK

Multi-Instrument Options

mail: motiument options	
MSO software option and 16 Channel Digital probe lea	adset WS3K-MS0
MSO License (MS Probe Not Included)	WS3K-MSO-LICENSE
Function Generator Option	WS3K-FG
Spectrum Analyzer for WaveSurfer 3000z	WS3K-SPECTRUM-1
Audiobus Trigger and Decode Option for I ² S, LJ, RJ, and TDM	WS3K-Audiobus TD
CAN and LIN Trigger and Decode Option	WS3K-AUTO
CAN FD Trigger and Decode Option	WS3K-CAN FDbus TD
I ² C, SPI, UART and RS-232 Trigger and Decode Option	WS3K-EMB
FlexRay Trigger and Decode Option	WS3K-FlexRaybus TD
Power Analysis Option	WS3K-PWR

Product Description	Product Code
Probes	
250 MHz Passive Probe 10:1, 10 M Ω	PP019
500 MHz Passive Probe 10:1, 10 MΩ	PP020
700 V, 15 MHz High-Voltage Differential Probe	AP031
Power/Voltage Rail Probe. 4 GHz bandwidth, 1.2x attenuation, ±30V offset, ±800mV	RP4030
Browser for use with RP4030 RP40	00-BROWSER
1,500 V, 120 MHz High-Voltage Differential Probe	HVD3106A
	HVD3106A-6M
1kV, 120 MHz High Voltage Differential Probe without tip Accessories HVD3	3106A-NOACC
1,500 V, 25 MHz High-Voltage Differential Probe	HVD3102A
1kV, 25 MHz High Voltage Differential Probe without HVD3 tip Accessories	3102A-NOACC
2kV, 120 MHz High Voltage Differential Probe	HVD3206A
2kV, 80 MHz High Voltage Differential Probe with 6m cable F	IVD3206A-6M
2kV, 400 MHz High Voltage Differential Probe	HVD3220
6kV, 100 MHz High Voltage Differential Probe	HVD3605A
High Voltage Fiber Optic Probe, 150 MHz (requires accessory tip)	HVF0108
	F0100-1X-TIP
	F0100-5X-TIP
	0100-20X-TIP
30 A; 100 MHz Current Probe – AC/DC; 30 A _{rms;} 50 A _{peak} Pulse	CP031
30 A; 100 MHz High Sensitivity Current Probe – AC/DC; 30 A _{rms;} 50 A _{peak} Pulse	CP031A
30 A; 50 MHz Current Probe – AC/DC; 30 A _{rms} ; 50 A _{peak} Pulse	CP030
30 A, 10 MHz Current Probe - AC/DC, 30 A rms, 50 A_{Peak} Pulse, 3 meter cable	CP030-3M
30 A; 50 MHz High Sensitivity Current Probe – AC/DC; 30 $A_{rms;}$ 50 A_{peak} Pulse	CP030A
150 A; 10 MHz Current Probe – AC/DC; 150 A _{rms;} 500 A _{peak} Puls	se CP150
150 A, 5 MHz Current Probe - AC/DC, 150 A rms, 500 A _{Peak} Pulse, 6 meter cable	CP150-6M
500 A; 2 MHz Current Probe – AC/DC; 500 A _{rms} ; 700 A _{peak} Pulse	e CP500
Deskew Calibration Source for CP031, CP030 and AP015	DCS025
500 MHz Differential Probe	AP033
200 MHz, 3.5 pF, 1 M Ω Active Differential Probe, ± 20 V, 60V common-mode	ZD200
1 GHz, 1.0 pF, 1 M Ω Active Differential Probe, ± 8 V, 10V common-mode	ZD1000
1.5 GHz, 1.0 pF, 1 M Ω Active Differential Probe, ±8 V, 10V common-mode	ZD1500
1 GHz, 0.9 pF, 1 MΩ High Impedance Active Probe	ZS1000
1.5 GHz, 0.9 pF, 1 MΩ High Impedance Active Probe	ZS1500
100:1 400 MHz 50 MΩ 1 kV High-voltage Probe	HVP120
2 kV HV Probe, 6 kV overvoltage capability	PPE6KV-A
500 MHz 60 V Common Mode Differential Probe. Includes standard set of leads and tips.	DL05-HCM
1 GHz 60 V Common Mode Differential Probe. Includes standard set of leads and tips.	DL10-HCM
Probe Adapters TekProbe to ProBus Probe Adapter	TPA10
reknione to Probus Probe Adapter	IPAIU

Customer Service

Teledyne LeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year. This warranty includes:

aluetesters.com

• No charge for return shipping • Long-term 7-year support • Upgrade to latest software at no charge

1-800-5-LeCroy teledynelecroy.com

Local sales offices are located throughout the world. Visit our website to find the most convenient location.

© 2022 Teledyne LeCroy, Inc. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders.

